Monday, February 20, 2012

1111.2026 (Mario Berta et al.)

Quantum to Classical Randomness Extractors    [PDF]

Mario Berta, Omar Fawzi, Stephanie Wehner
The goal of randomness extraction is to distill (almost) perfect randomness
from a weak source of randomness. When the source yields a classical string X,
many extractor constructions are known. Yet, when considering a physical
randomness source, X is itself ultimately the result of a measurement on an
underlying quantum system. When characterizing the power of a source to supply
randomness it is hence a natural question to ask, how much classical randomness
we can extract from a quantum system. To tackle this question we here take on
the study of quantum-to-classical randomness extractors (QC-extractors). We
provide constructions of QC-extractors based on measurements in a full set of
mutually unbiased bases (MUBs), and certain single qubit measurements. As the
first application, we show that any QC-extractor gives rise to entropic
uncertainty relations with respect to quantum side information. Such relations
were previously only known for two measurements. As the second application, we
resolve the central open question in the noisy-storage model [Wehner et al.,
PRL 100, 220502 (2008)] by linking security to the quantum capacity of the
adversary's storage device.
View original: http://arxiv.org/abs/1111.2026

No comments:

Post a Comment