Sadegh Raeisi, Wolfgang Tittel, Christoph Simon
We propose an experiment where a photon is first cloned by stimulated parametric down-conversion, making many (imperfect) copies, and then the cloning transformation is inverted, regenerating the original photon while destroying the copies. Focusing on the case where the initial photon is entangled with another photon, we study the conditions under which entanglement can be proven in the final state. The proposed experiment would provide a clear demonstration that quantum information is preserved in quantum cloning. It would furthermore allow a definitive experimental proof for micro-macro entanglement in the intermediate multiphoton state, which is still an outstanding challenge. Finally, it might provide a quantum detection technique for small differences in transmission (e.g., in biological samples), whose sensitivity scales better with the number of photons used than a classical transmission measurement.
View original:
http://arxiv.org/abs/1111.7283
No comments:
Post a Comment