Maria Kieferova, Daniel Nagaj
We analyze continuous-time quantum walks on necklace graphs - cyclical graphs consisting of many copies of a smaller graph (pearl). Using a Bloch-type ansatz for the eigenfunctions, we block-diagonalize the Hamiltonian, reducing the effective size of the problem to the size of a single pearl. We then present a general approach for showing that the mixing time scales (with growing size of the necklace) similarly to that of a simple walk on a cycle. Finally, we present results for mixing on several necklace graphs.
View original:
http://arxiv.org/abs/1111.4433
No comments:
Post a Comment