Wednesday, April 11, 2012

1204.2161 (Manuel Kreibich et al.)

Relation between the eigenfrequencies of Bogoliubov excitations of BECs
and the eigenvalues of the Jacobian in a time-dependent variational approach
   [PDF]

Manuel Kreibich, Jörg Main, Günter Wunner
We study the relation between the eigenfrequencies of the Bogoliubov excitations of Bose-Einstein condensates, and the eigenvalues of the Jacobian stability matrix in a variational approach which maps the Gross-Pitaevskii equation to a system of equations of motion for the variational parameters. We do this for Bose-Einstein condensates with attractive contact interaction in an external trap, and for a simple model of a self-trapped Bose-Einstein condensate with attractive 1/r interaction. The stationary solutions of the Gross-Pitaevskii equation and Bogoliubov excitations are calculated using a finite-difference scheme. The Bogoliubov spectra of the ground and excited state of the self-trapped monopolar condensate exhibits a Rydberg-like structure, which can be explained by means of a quantum defect theory. On the variational side, we treat the problem using an ansatz of time-dependent coupled Gaussians combined with spherical harmonics. We first apply this ansatz to a condensate in an external trap without long-range interaction, and calculate the excitation spectrum with the help of the time-dependent variational principle. Comparing with the full-numerical results, we find a good agreement for the eigenfrequencies of the lowest excitation modes with arbitrary angular momenta. The variational method is then applied to calculate the excitations of the self-trapped monopolar condensates, and the eigenfrequencies of the excitation modes are compared.
View original: http://arxiv.org/abs/1204.2161

No comments:

Post a Comment