J. Jeknic-Dugic, M. Dugic, A. Francom, M. Arsenijevic
Modern quantum theory introduces quantum structures (decompositions into subsystems) as a new discourse that is not fully comparable with the classical-physics counterpart. To this end, so-called Entanglement Relativity appears as a corollary of the universally valid quantum mechanics that can provide for a deeper and more elaborate description of the composite quantum systems. In this paper we employ this new concept to describe the hydrogen atom. We offer a consistent picture of the hydrogen atom as an open quantum system that naturally answers the following important questions: (a) how do the so called "quantum jumps" in atomic excitation and de-excitation occur? and (b) why does the classically and seemingly artificial "center-of-mass + relative degrees of freedom" structure appear as the primarily operable form in most of the experimental reality of atoms?
View original:
http://arxiv.org/abs/1204.3172
No comments:
Post a Comment