Thursday, May 3, 2012

1205.0519 (Christian Ott et al.)

Quantum Interferometry and Correlated Two-Electron Wave-Packet
Observation in Helium
   [PDF]

Christian Ott, Andreas Kaldun, Philipp Raith, Kristina Meyer, Martin Laux, Yizhu Zhang, Steffen Hagstotz, Thomas Ding, Robert Heck, Thomas Pfeifer
The concerted motion of two or more bound electrons governs atomic and molecular non-equilibrium processes and chemical reactions. It is thus a long-standing scientific dream to measure the dynamics of two bound correlated electrons in the quantum regime. Quantum wave packets were previously observed for single-active electrons on their natural attosecond timescales. However, at least two active electrons and a nucleus are required to address the quantum three-body problem. This situation is realized in the helium atom, but direct time-resolved observation of two-electron wave-packet motion remained an unaccomplished challenge. Here, we measure a 1.2-femtosecond quantum beating among low-lying doubly-excited states in helium to evidence a correlated two-electron wave packet. Our experimental method combines attosecond transient-absorption spectroscopy at unprecedented high spectral resolution (20 meV near 60 eV) with an intensity-tuneable visible laser field to couple the quantum states from the perturbative to the strong-coupling regime. This multi-dimensional transient-coupling scheme reveals an inversion of the characteristic Fano line shapes for a range of doubly-excited states. Employing Fano-type autoionization as a natural quantum interferometer, a dynamical phase shift by laser coupling to the N=2 continuum is postulated and experimentally quantified. This phase maps a transition from effectively single-active-electron to two-electron dynamics as the electron-electron interaction increases in lower-lying quantum states. In the future, such experiments will provide benchmark data for testing dynamical few-body quantum theory. They will boost our understanding of chemically and biologically important metastable electronic transition states and their dynamics on attosecond time scales.
View original: http://arxiv.org/abs/1205.0519

No comments:

Post a Comment