Arijit Dutta, Marcin Wieśniak, Marek Żukowski
Bell's theorem for systems more complicated than two qubits faces a hidden, as yet undiscussed, problem. One of the methods to derive Bell's inequalities is to assume existence of joint probability distribution for measurement results for all settings in the given experiment. However for spins-1, one faces the problem that eigenvalues of observables do not allow a consistent algebra if one allows all possible settings on each side (Bell 1966 contradiction), or some specific sets (leading to a Kochen-Specker 1967 contradiction). We show here that by choosing special set of settings which never lead to inconsistent algebra of eigenvalues, one can still derive multisetting Bell inequalities, and that they are robustly violated. Violation factors increase with the number of subsystems. The inequalities involve only spin observables, we do not allow all possible qutrit observables, still the violations are strong.
View original:
http://arxiv.org/abs/1205.1399
No comments:
Post a Comment