Monday, June 11, 2012

1206.1740 (Jędrzej Kaniewski et al.)

Secure bit commitment from relativistic constraints    [PDF]

Jędrzej Kaniewski, Marco Tomamichel, Esther Hänggi, Stephanie Wehner
We investigate two-party cryptographic protocols that are secure under assumptions motivated by physics, namely relativistic assumptions (no-signalling) and quantum mechanics. In particular, we discuss the security of bit commitment in so-called split models, i.e. models in which at least some of the parties are not allowed to communicate during certain phases of the protocol. We find the minimal splits that are necessary to evade the Mayers-Lo-Chau no-go argument and present protocols that achieve security in these split models. Furthermore, we introduce the notion of local versus global command, a subtle issue that arises when the split committer is required to delegate non-communicating agents to open the commitment. We argue that classical protocols are insecure under global command in the split model we consider. On the other hand, we provide a rigorous security proof in the global command model for Kent's quantum protocol [Kent 2011, Unconditionally Secure Bit Commitment by Transmitting Measurement Outcomes]. The proof employs two fundamental principles of modern physics, the no-signalling property of relativity and the uncertainty principle of quantum mechanics.
View original: http://arxiv.org/abs/1206.1740

No comments:

Post a Comment