Friday, August 31, 2012

1208.6260 (Bill Poirier)

Trajectory-based Theory of Relativistic Quantum Particles    [PDF]

Bill Poirier
Recently, a self-contained trajectory-based formulation of non-relativistic quantum mechanics was developed [Ann. Phys. 315, 505 (2005); Chem. Phys. 370, 4 (2010); J. Chem. Phys. 136, 031102 (2012)], that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories that extremize a suitable action. Here, the trajectory-based approach is developed into a viable, generally covariant, relativistic quantum theory for single (spin-zero, massive) particles. Central to this development is the introduction of a new notion of global simultaneity for accelerated particles--together with basic postulates concerning probability conservation and causality. The latter postulate is found to be violated by the Klein-Gordon equation, leading to its well-known problems as a single-particle theory. Various examples are considered, including the time evolution of a relativistic Gaussian wavepacket.
View original: http://arxiv.org/abs/1208.6260

No comments:

Post a Comment