1201.2229 (Xiangrong Li et al.)
Xiangrong Li, Dafa Li
We construct coefficient matrices of size 2^l by 2^{n-l} associated with pure n-qubit states and prove the invariance of the ranks of the coefficient matrices under stochastic local operations and classical communication (SLOCC). The ranks give rise to a simple way of partitioning pure n-qubit states into inequivalent families and distinguishing degenerate families from one another under SLOCC. Moreover, the classification scheme via the ranks of coefficient matrices can be combined with other schemes to build a more refined classification scheme. To exemplify we classify the nine families of four qubits introduced by Verstraete et al. [Phys. Rev. A 65, 052112 (2002)] further into inequivalent subfamilies via the ranks of coefficient matrices, and as a result, we find 28 genuinely entangled families and all the degenerate classes can be distinguished up to permutations of the four qubits. We also discuss the completeness of the classification of four qubits into nine families.
View original:
http://arxiv.org/abs/1201.2229
No comments:
Post a Comment