Tuesday, October 16, 2012

1210.3655 (Kenneth Wright et al.)

Reliable transport through a microfabricated X-junction
surface-electrode ion trap
   [PDF]

Kenneth Wright, Jason M Amini, Daniel L Faircloth, Curtis Volin, S Charles Doret, Harley Hayden, C-S Pai, David W Landgren, Douglas Denison, Tyler Killian, Richart E Slusher, Alexa W Harter
We report the design, fabrication, and characterization of a microfabricated surface-electrode ion trap that supports controlled transport through the two-dimensional intersection of linear trapping zones arranged in a ninety-degree cross. The trap is fabricated with very-large-scalable-integration (VLSI) techniques which are compatible with scaling to a larger quantum information processor. The shape of the radio-frequency (RF) electrodes is optimized with a genetic algorithm to minimize axial pseudopotential barriers and to minimize ion heating during transport. Seventy-eight independent DC control electrodes enable fine control of the trapping potentials. We demonstrate reliable ion transport between junction legs, trapping of ion chains with nearly-equal spacing in one of the trap's linear sections, and merging and splitting ions from these chains. Doppler-cooled ions survive more than 10^5 round-trip transits between junction legs without loss and more than sixty-five consecutive round trips without laser cooling.
View original: http://arxiv.org/abs/1210.3655

No comments:

Post a Comment