Friday, December 7, 2012

1103.1219 (Alex W. Chin et al.)

Quantum Metrology in Non-Markovian Environments    [PDF]

Alex W. Chin, Susana F. Huelga, Martin B. Plenio
We analyze precision bounds for a local phase estimation in the presence of general, non-Markovian phase noise. We demonstrate that the metrological equivalence of product and maximally entangled states that holds under strictly Markovian dephasing fails in the non-Markovian case. Using an exactly solvable model of a physically realistic finite bandwidth dephasing environment, we demonstrate that the ensuing non-Markovian dynamics enables quantum correlated states to outperform metrological strategies based on uncorrelated states using otherwise identical resources. We show that this conclusion is a direct result of the coherent dynamics of the global state of the system and environment and therefore the obtained scaling with the number of particles, which surpasses the standard quantum limit but does not achieve Heisenberg resolution, possesses general validity that goes beyond specific models. This is in marked contrast with the situation encountered under general Markovian noise, where an arbitrarily small amount of noise is enough to restore the scaling dictated by the standard quantum limit.
View original: http://arxiv.org/abs/1103.1219

No comments:

Post a Comment