Wednesday, January 9, 2013

1301.1594 (Mario Berta et al.)

Identifying the Information Gain of a Quantum Measurement    [PDF]

Mario Berta, Joseph M. Renes, Mark M. Wilde
We show that quantum-to-classical channels, i.e., quantum measurements, can be asymptotically simulated by an amount of classical communication equal to the quantum mutual information of the measurement, if sufficient shared randomness is available. This result generalizes Winter's measurement compression theorem for fixed independent and identically distributed inputs [Winter, CMP 244 (157), 2004] to arbitrary inputs, and more importantly, it identifies the quantum mutual information of a measurement as the information gained by performing it, independent of the input state on which it is performed. Our result is a generalization of the classical reverse Shannon theorem to quantum-to-classical channels. In this sense, it can be seen as a quantum reverse Shannon theorem for quantum-to-classical channels, but with the entanglement assistance and quantum communication replaced by shared randomness and classical communication, respectively. The proof is based on a novel one-shot state merging protocol for "classically coherent states" as well as the post-selection technique for quantum channels, and it uses techniques developed for the quantum reverse Shannon theorem [Berta et al., CMP 306 (579), 2011].
View original: http://arxiv.org/abs/1301.1594

No comments:

Post a Comment