1301.3634 (Jan Perina Jr)
Jan Perina Jr
Quantum pulsed second-subharmonic generation in a planar waveguide with a small periodic corrugation at the surface is studied. Back-scattering of the interacting fields on the corrugation enhances the nonlinear interaction giving larger values of squeezing. The problem of back-scattering is treated by perturbation theory, using the Fourier transform for non-dispersion propagation, and by numerical approach in the general case. Optimum spectral modes for squeezed-light generation are found using the Bloch-Messiah reduction. Improvement in squeezing and increase of numbers of generated photons are quantified for the corrugation resonating with the fundamental and second-subharmonic field. Splitting of the generated pulse by the corrugation is predicted.
View original:
http://arxiv.org/abs/1301.3634
No comments:
Post a Comment