Monday, February 25, 2013

1106.3518 (L. Gaudreau et al.)

Coherent control of three-spin states in a triple quantum dot    [PDF]

L. Gaudreau, G. Granger, A. Kam, G. C. Aers, S. A. Studenikin, P. Zawadzki, M. Pioro-Ladrière, Z. R. Wasilewski, A. S. Sachrajda
Spin qubits involving individual spins in single quantum dots or coupled spins in double quantum dots have emerged as potential building blocks for quantum information processing applications. It has been suggested that triple quantum dots may provide additional tools and functionalities. These include the encoding of information to either obtain protection from decoherence or to permit all-electrical operation, efficient spin busing across a quantum circuit, and to enable quantum error correction utilizing the three-spin Greenberger-Horn-Zeilinger quantum state. Towards these goals we demonstrate for the first time coherent manipulation between two interacting three-spin states. We employ the Landau-Zener-St\"uckelberg approach for creating and manipulating coherent superpositions of quantum states. We confirm that we are able to maintain coherence when decreasing the exchange coupling of one spin with another while simultaneously increasing its coupling with the third. Such control of pairwise exchange is a requirement of most spin qubit architectures but has not been previously demonstrated.
View original: http://arxiv.org/abs/1106.3518

No comments:

Post a Comment