Wednesday, April 24, 2013

1304.5723 (Péter E. Frenkel et al.)

Classical information storage in an $n$-level quantum system    [PDF]

Péter E. Frenkel, Mihály Weiner
A game is played by a team of two --- say Alice and Bob --- in which the value of a random variable $x$ is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum $n$-level system, respectively a classical $n$-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of $x$ in the used system by requiring Bob to specify a value $z$ and giving a reward of value $ f(x,z)$ to the team. We show that whatever the probability distribution of $x$ and the reward function $f$ are, when using a quantum $n$-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical $n$-state system. The proof relies on mixed discriminants of positive matrices and --- perhaps surprisingly --- an application of the Supply--Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex $n$-space.
View original: http://arxiv.org/abs/1304.5723

No comments:

Post a Comment