Alpha Hamadou Ibrahim, Filippus S. Roux, Melanie McLaren, Thomas Konrad, Andrew Forbes
The turbulence induced decay of orbital angular momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our results with previous work, we simulate the turbulent atmosphere with a single phase screen based on the Kolmogorov theory of turbulence. We consider two different scenarios: in the first only one of the two photons propagates through turbulence, and in the second both photons propagate through uncorrelated turbulence. Comparing the entanglement evolution for different OAM values, we found the entanglement to be more robust in turbulence for higher OAM values. We derive an empirical formula for the distance scale at which entanglement decays in term of the scale parameters and the OAM value.
View original:
http://arxiv.org/abs/1306.6495
No comments:
Post a Comment