N. M. Linke, D. T. C. Allcock, D. J. Szwer, C. J. Ballance, T. P. Harty, H. A. Janacek, D. N. Stacey, A. M. Steane, D. M. Lucas
We demonstrate a Doppler cooling and detection scheme for ions with low-lying
D levels which almost entirely suppresses scattered laser light background,
while retaining a high fluorescence signal and efficient cooling. We cool a
single ion with a laser on the 2S1/2 to 2P1/2 transition as usual, but repump
via the 2P3/2 level. By filtering out light on the cooling transition and
detecting only the fluorescence from the 2P_3/2 to 2S1/2 decays, we suppress
the scattered laser light background count rate to 1 per second while
maintaining a signal of 29000 per second with moderate saturation of the
cooling transition. This scheme will be particularly useful for experiments
where ions are trapped in close proximity to surfaces, such as the trap
electrodes in microfabricated ion traps, which leads to high background scatter
from the cooling beam.
View original:
http://arxiv.org/abs/1110.5570
No comments:
Post a Comment