Tuesday, February 7, 2012

1111.0776 (Marc Cheneau et al.)

Light-cone-like spreading of correlations in a quantum many-body system    [PDF]

Marc Cheneau, Peter Barmettler, Dario Poletti, Manuel Endres, Peter Schauß, Takeshi Fukuhara, Christian Gross, Immanuel Bloch, Corinna Kollath, Stefan Kuhr
How fast can correlations spread in a quantum many-body system? Based on the
seminal work by Lieb and Robinson, it has recently been shown that several
interacting many-body systems exhibit an effective light cone that bounds the
propagation speed of correlations. The existence of such a "speed of light" has
profound implications for condensed matter physics and quantum information, but
has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body
system. By quenching a one-dimensional quantum gas in an optical lattice, we
reveal how quasiparticle pairs transport correlations with a finite velocity
across the system, resulting in an effective light cone for the quantum
dynamics. Our results open important perspectives for understanding relaxation
of closed quantum systems far from equilibrium as well as for engineering
efficient quantum channels necessary for fast quantum computations.
View original: http://arxiv.org/abs/1111.0776

No comments:

Post a Comment