1108.5647 (Jop Briet et al.)
Jop Briet, Thomas Vidick
XOR games are the simplest model in which the nonlocal properties of entanglement manifest themselves. When there are two players, it is well known that the bias --- the maximum advantage over random play --- of entangled players can be at most a constant times greater than that of classical players. Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed that no such bound holds when there are three or more players: the advantage of entangled players over classical players can become unbounded, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a QC-gap of order $\sqrt{N}$ with $N^2$ questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of $\sqrt{N}$ for a state of local dimension $N$ per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on probabilistic estimates on the norm of random matrices and higher-order tensors which may be of independent interest.
View original:
http://arxiv.org/abs/1108.5647
No comments:
Post a Comment