Thursday, April 26, 2012

1201.1176 (Jia Wang et al.)

Origin of the Three-body Parameter Universality in Efimov Physics    [PDF]

Jia Wang, J. P. D'Incao, B. D. Esry, Chris H. Greene
In recent years extensive theoretical and experimental studies of universal few-body physics have led to advances in our understanding of universal Efimov physics [1]. The Efimov effect, once considered a mysterious and esoteric effect, is today a reality that many experiments in ultracold quantum gases have successfully observed and continued to explore [2-14]. Whereas theory was the driving force behind our understanding of Efimov physics for decades, recent experiments have contributed an unexpected discovery. Specifically, measurements have found that the so-called three-body parameter determining several properties of the system is universal, even though fundamental assumptions in the theory of the Efimov effect suggest that it should be a variable property that depends on the precise details of the short-range two- and three-body interactions. The present Letter resolves this apparent contradiction by elucidating unanticipated implications of the two-body interactions. Our study shows that the three-body parameter universality emerges because a universal effective barrier in the three-body potentials prevents the three particles from simultaneously getting close to each other. Our results also show limitations on this universality, as it is more likely to occur for neutral atoms and less likely to extend to light nuclei.
View original: http://arxiv.org/abs/1201.1176

No comments:

Post a Comment