Rafael Rabelo, Law Yun Zhi, Valerio Scarani
In this Letter we compute an analogue of Tsirelson's bound for Hardy's test of nonlocality, that is, the maximum violation of locality constraints allowed by the quantum formalism, irrespective of the dimension of the system. The value is found to be the same as the one achievable already with two-qubit systems. By considering realistic constraints in Hardy's test, we also compute device-independent upper bounds on this violation and show that these bounds are saturated by two-qubit systems, thus showing that there is no advantage in using higher-dimensional systems in experimental implementations of such test.
View original:
http://arxiv.org/abs/1205.3280
No comments:
Post a Comment