E. A. Muljarov, W. Langbein, R. Zimmermann
A Brillouin-Wigner perturbation theory is developed for open electromagnetic systems which are characterised by discrete resonant states with complex eigenenergies. Since these states are exponentially growing at large distances, a modified normalisation is introduced that allows a simple spectral representation of the Green's function. The perturbed modes are found by solving a linear eigenvalue problem in matrix form. The method is illustrated on exactly solvable one- and three-dimensional examples being, respectively, a dielectric slab and a microsphere.
View original:
http://arxiv.org/abs/1205.4924
No comments:
Post a Comment