Thursday, June 21, 2012

1206.4510 (D. H. Mahler et al.)

Identification of Decoherence-Free Subspaces Without Quantum Process
Tomography
   [PDF]

D. H. Mahler, L. Rozema, A. Darabi, A. M. Steinberg
Characterizing a quantum process is the critical first step towards applying such a process in a quantum information protocol. Full process characterization is known to be extremely resource-intensive, motivating the search for more efficient ways to extract salient information about the process. An example is the identification of "decoherence-free subspaces", in which computation or communications may be carried out, immune to the principal sources of decoherence in the system. Here we propose and demonstrate a protocol which enables one to directly identify a DFS without carrying out a full reconstruction. Our protocol offers an up-to-quadratic speedup over standard process tomography. In this paper, we experimentally identify the DFS of a two-qubit process with 32 measurements rather than the usual 256, characterize the robustness and efficiency of the protocol, and discuss its extension to higher-dimensional systems.
View original: http://arxiv.org/abs/1206.4510

No comments:

Post a Comment