Thursday, July 26, 2012

1207.5868 (Clarice D. Aiello et al.)

Composite-pulse magnetometry with a solid-state quantum sensor    [PDF]

Clarice D. Aiello, Masashi Hirose, Paola Cappellaro
The sensitivity of quantum magnetometers is challenged by control errors and, especially in the solid-state, by their short coherence times. Refocusing techniques can overcome these limitations and improve the sensitivity to periodic fields, but they come at the cost of reduced bandwidth and cannot be applied to sense static (DC) or aperiodic fields. Here we experimentally demonstrate that continuous driving of the sensor spin by a composite pulse known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating both driving power imperfections and decoherence. A suitable choice of RE parameters compensates for different scenarios of noise strength and origin. The method can be applied to nanoscale sensing in variable environments or to realize noise spectroscopy. In a room-temperature implementation based on a single electronic spin in diamond, composite-pulse magnetometry provides a tunable trade-off between sensitivities in the microT/sqrt(Hz) range, comparable to those obtained with Ramsey spectroscopy, and coherence times approaching T1.
View original: http://arxiv.org/abs/1207.5868

No comments:

Post a Comment