Kan He, Jin-Chuan Hou, Chi-Kwong Li
A geometric characterization is given for invertible quantum measurement maps. Denote by ${\mathcal S}(H)$ the convex set of all states (i.e., trace-1 positive operators) on Hilbert space $H$ with dim$H\leq \infty$, and $[\rho_1, \rho_2]$ the line segment joining two elements $\rho_1, \rho_2$ in ${\mathcal S}(H)$. It is shown that a bijective map $\phi:{\mathcal S}(H) \rightarrow {\mathcal S}(H)$ satisfies $\phi([\rho_1, \rho_2]) \subseteq [\phi(\rho_1),\phi(\rho_2)]$ for any $\rho_1, \rho_2 \in {\mathcal S}$ if and only if $\phi$ has one of the following forms $$\rho \mapsto \frac{M\rho M^*}{{\rm tr}(M\rho M^*)}\quad \hbox{or} \quad \rho \mapsto \frac{M\rho^T M^*}{{\rm tr}(M\rho^T M^*)},$$ where $M$ is an invertible bounded linear operator and $\rho^T$ is the transpose of $\rho$ with respect to an arbitrarily fixed orthonormal basis.
View original:
http://arxiv.org/abs/1210.0433
No comments:
Post a Comment