Eric G. Cavalcanti, Michael J. W. Hall, Howard M. Wiseman
Various protocols exist by which a referee can be convinced that two observers share an entangled resource. Such protocols typically specify the types of communication allowed, and the degrees of trust required, between the referee and each observer. Here it is shown that the need for any degree of trust of the observers by the referee can be completely removed, allowing device independent verification of entanglement, via the referee using classical and quantum communication channels appropriately. In particular, trust-free verification of Bell nonlocality, EPR-steering, and entanglement, respectively, requires two classical channels, one classical and one quantum channel, and two quantum channels. These channels correspond to suitable inputs of quantum randomness by the referee, which prevent the observers from mimicking entanglement using shared classical randomness. Our results generalize recent work by F. Buscemi [Phys. Rev. Lett. {\bf 108}, 200401 (2012)], and offer a perspective on the operational significance of that work. They also offer the possibility of simpler experimental demonstrations of the basic idea of quantum-refereed nonlocality tests.
View original:
http://arxiv.org/abs/1210.6051
No comments:
Post a Comment