G. F. Xu, J. Zhang, D. M. Tong, Erik Sjoqvist, L. C. Kwek
Quantum computation that combines the coherence stabilization virtues of decoherence-free subspaces and the fault tolerance of geometric holonomic control is of great practical importance. Some schemes of adiabatic holonomic quantum computation in decoherence-free subspaces have been proposed in the past few years. However, non-adiabatic holonomic quantum computation in decoherence-free subspaces, which avoids long run-time requirement but with all the robust advantages, remains an open problem. Here, we demonstrate how to realize non-adiabatic holonomic quantum computation in decoherence-free subspaces. By using only three neighboring physical qubits undergoing collective dephasing to encode one logical qubit, we realize a universal set of quantum gates.
View original:
http://arxiv.org/abs/1210.6782
No comments:
Post a Comment