Alex C. Han, Moshe Shapiro, Paul Brumer
We analyze electronically excited nuclear wave functions and their coherence when subjecting a molecule to the action of natural, pulsed incoherent solar-like light, and to that of ultrashort coherent light assumed to have the same center frequencies and spectral bandwidths. Specifically, we compute the spatio-temporal dependence of the excited wave packets and their electronic coherence for these two types of light sources, on different electronic potential energy surfaces. The resultant excited state wave functions are shown to be qualitatively different, reflecting the light source from which they originated. In addition, electronic coherence is found to decay significantly faster for incoherent light than for coherent ultrafast excitation, for both continuum and bound wave packets. These results confirm that the dynamics observed in studies using ultrashort coherent pulses are not relevant to naturally occurring solar-induced processes such as photosynthesis and vision.
View original:
http://arxiv.org/abs/1211.5794
No comments:
Post a Comment