L. A. Jones, J. D. Carter, J. D. D. Martin
A non-resonant microwave dressing field at 38.465 GHz was used to eliminate the static electric dipole moment difference between the $49s_{1/2}$ and $48s_{1/2}$ Rydberg states of $^{87}$Rb in dc fields of approximately 1 V/cm. The reduced susceptibility to electric field fluctuations was measured using 2-photon microwave spectroscopy. An anomalous spectral doublet is attributed to polarization ellipticity in the dressing field. The demonstrated ability to inhibit static dipole moment differences --- while retaining sensitivity to high frequency fields --- is applicable to sensors and/or quantum devices using Rydberg atoms.
View original:
http://arxiv.org/abs/1301.4170
No comments:
Post a Comment