1301.4178 (S. A. R. Horsley)
S. A. R. Horsley
A theory is presented for calculating the effect of the electromagnetic field on the centre of mass of a macroscopic dielectric body that is valid in both quantum and classical regimes. We apply the theory to find the classical equation of motion for the centre of mass of a macroscopic object in a classical field, and the spreading of an initially localized wave-packet representing the centre of mass of a small object, in a quantum field. The classical force is found to be consistent with the identification of the Abraham momentum with the mechanical momentum of light, and the motion of the wave-packet is found to be subject to an acceleration due to the Casimir force, and a time dependent fluctuating motion due the creation of pairs of excitations within the object. The theory is valid for any dielectric that has susceptibilities satisfying the Kramers-Kronig relations, and is not subject to arguments regarding the form of the electromagnetic energy-momentum tensor within a medium.
View original:
http://arxiv.org/abs/1301.4178
No comments:
Post a Comment