1302.1750 (Roland Omnes)
Roland Omnes
A brief review is given of the present state of an approach to consistency between basic quantum mechanics and a unique macroscopic reality, with no assumption of branching in the state of the universe. The main new idea consists in the recognition of local properties in the growth and transport of entanglement between a macroscopic measuring quantum system and a microscopic measured one. Moving waves of entanglement from the environment arise then and carry external phases, affecting significantly the state of the measuring device. These "predecoherence" waves perturb randomly the growth of other waves, which carry entanglement with the measured system. The outcome of these wave interactions could generate random fluctuations in the quantum probabilities of different measurement channels, which could lead in turn to a collapse mechanism satisfying Born's probability rule, according to earlier works by Nelson and Pearle. A necessary randomness in the environment remains however unexplained and some suggestions regarding algorithmic complexity of the wave functions in a large quantum system e are made along that direction.
View original:
http://arxiv.org/abs/1302.1750
No comments:
Post a Comment