Afshin Abdollahi, Mehdi Saeedi, Massoud Pedram
A rotation-based synthesis framework for reversible logic is proposed. We develop a canonical representation based on binary decision diagrams and introduce operators to manipulate the developed representation model. Furthermore, a recursive functional bi-decomposition approach is proposed to automatically synthesize a given function. While Boolean reversible logic is particularly addressed, our framework constructs intermediate quantum states that may be in superposition, hence we combine techniques from reversible Boolean logic and quantum computation. The proposed approach results in quadratic gate count for multiple-control Toffoli gates without ancillae, linear depth for quantum carry-ripple adder, and $O(n\log^2 n)$ size for quantum multiplexer.
View original:
http://arxiv.org/abs/1302.5382
No comments:
Post a Comment