Eyob A. Sete, Andrei Galiautdinov, Eric Mlinar, John M. Martinis, Alexander N. Korotkov
We analyze single-shot readout for superconducting qubits via controlled catch, dispersion, and release of a microwave field. A tunable coupler is used to decouple the microwave resonator from the transmission line during the dispersive qubit-resonator interaction, thus circumventing damping from the Purcell effect. We show that if the qubit frequency tuning is sufficiently adiabatic, a fast high-fidelity qubit readout is possible even in the strongly nonlinear dispersive regime. Interestingly, the Jaynes-Cummings nonlinearity leads to the quadrature squeezing of the resonator field below the standard quantum limit, resulting in a significant decrease of the measurement error.
View original:
http://arxiv.org/abs/1302.7020
No comments:
Post a Comment