Andrei Afanasev, Carl E. Carson, Asmita Mukherjee
Twisted photon states, or photon states with large ($> \hbar$) angular momentum projection in the direction of motion, can photoexcite atomic final states of differing quantum numbers. If the photon symmetry axis coincides with the center of an atom, there are known selection rules that require exact matching between the quantum numbers of the photon and the photoexcited states. The more general case of arbitrarily positioned beams relaxes the selection rules but produces a distribution of quantum numbers of the final atomic states that is novel and distinct from final states produced by plane-wave photons. Numerical calculations are presented using a hydrogen atom as an example.
View original:
http://arxiv.org/abs/1304.0115
No comments:
Post a Comment