Thursday, April 4, 2013

1304.1068 (G. Kucsko et al.)

Nanometer scale quantum thermometry in a living cell    [PDF]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, M. D. Lukin
Sensitive probing of temperature variations on nanometer scales represents an outstanding challenge in many areas of modern science and technology. In particular, a thermometer capable of sub-degree temperature resolution as well as integration within a living system could provide a powerful new tool for many areas of biological research, including temperature-induced control of gene expression and cell-selective treatment of disease. Here, we demonstrate a new approach to nanoscale thermometry that utilizes coherent manipulation of the electronic spin associated with nitrogen-vacancy (NV) color centers in diamond. We show the ability to detect temperature variations down to 1.8 mK (sensitivity of 9 mK/sqrt(Hz)) in an ultra-pure bulk diamond sample. Using NV centers in diamond nanocrystals (nanodiamonds), we directly measure the local thermal environment at length scales down to 200 nm. Finally, by introducing both nanodiamonds and gold nanoparticles into a single human embryonic fibroblast, we demonstrate temperature-gradient control and mapping at the sub-cellular level, enabling unique potential applications in life sciences.
View original: http://arxiv.org/abs/1304.1068

No comments:

Post a Comment