Arun Nanduri, Ashley Donovan, Tak-San Ho, Herschel Rabitz
A common goal of quantum control is to maximize a physical observable through the application of a tailored field. The observable value as a function of the field constitutes a quantum control landscape. Previous works have shown, under specified conditions, that the quantum control landscape should be free of suboptimal critical points. This favorable landscape topology is one factor contributing to the efficiency of climbing the landscape. An additional, complementary factor is the landscape \textit{structure}, which constitutes all non-topological features. If the landscape's structure is too complex, then climbs may be forced to take inefficient convoluted routes to finding optimal controls. This paper provides a foundation for understanding control landscape structure by examining the linearity of gradient-based optimization trajectories through the space of control fields. For this assessment, a metric $R\geq 1$ is defined as the ratio of the path length of the optimization trajectory to the Euclidean distance between the initial control field and the resultant optimal control field that takes an observable from the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of nearly straight control trajectories encountered when optimizing a state-to-state transition probability. The collected results indicate that quantum control landscapes have very simple structural features. The favorable topology and the complementary simple structure of the control landscape provide a basis for understanding the generally observed ease of optimizing a state-to-state transition probability.
View original:
http://arxiv.org/abs/1305.4672
No comments:
Post a Comment