Johannes Floß, Ilya Sh. Averbukh
We demonstrate that the current laser technology used for field-free molecular alignment via a cascade of Raman rotational transitions allows for observing long-discussed non-linear quantum phenomena in the dynamics of the periodically kicked rotor. This includes the scaling of the absorbed energy near the conditions of quantum resonance and Anderson-like localisation in the angular momentum. Based on these findings, we suggest a novel approach to tunable selective rotational excitation and alignment in a molecular mixture, using trains of short laser pulses. We demonstrate the efficiency of this approach by applying it to a mixture of two nitrogen isotopologues (14N2 and 15N2), and show that strong selectivity is possible even at room temperature.
View original:
http://arxiv.org/abs/1110.3509
No comments:
Post a Comment