Monday, July 2, 2012

1206.6994 (Nicolai Lang et al.)

Minimal instances for toric code ground states    [PDF]

Nicolai Lang, Hans Peter Büchler
A decade ago Kitaev's toric code model established the new paradigm of topological quantum computation. Due to remarkable theoretical and experimental progress, the quantum simulation of such complex many-body systems is now within the realms of possibility. Here we consider the question, to which extent the ground states of small toric code systems differ from LU-equivalent graph states. We argue that simplistic (though experimentally attractive) setups obliterate the differences between the toric code and equivalent graph states; hence we search for the smallest setups on the square- and triangular lattice, such that the quasi-locality of the toric code hamiltonian becomes a distinctive feature. To this end, a purely geometric procedure to transform a given toric code setup into an LC-equivalent graph state is derived. In combination with an algorithmic computation of LC-equivalent graph states, we find the smallest non-trivial setup on the square lattice to contain 5 plaquettes and 16 qubits; on the triangular lattice the number of plaquettes and qubits is reduced to 4 and 9, respectively.
View original: http://arxiv.org/abs/1206.6994

No comments:

Post a Comment