Peter Wittek, Fernando M. Cucchietti
The Trotter-Suzuki approximation leads to an efficient algorithm for solving the time-dependent Schr\"odinger equation. Using existing highly optimized CPU and GPU kernels, we developed a distributed version of the algorithm that runs efficiently on a cluster. Our implementation also improves single node performance, and is able to use multiple GPUs within a node. The scaling is close to linear using the CPU kernels, whereas the efficiency of GPU kernels improve with larger matrices. We also introduce a hybrid kernel that simultaneously uses multicore CPUs and GPUs in a distributed system. This kernel is shown to be efficient when the matrix size would not fit in the GPU memory. Larger quantum systems scale especially well with a high number nodes. The code is available under an open source license.
View original:
http://arxiv.org/abs/1208.2407
No comments:
Post a Comment