J. G. Hirsch, O. Castaños, E. Nahmad-Achar, R. López-Penã
Two-level atoms interacting with a one mode cavity field at zero temperature have order parameters which reflect the presence of a quantum phase transition at a critical value of the atom-cavity coupling strength. Two popular examples are the number of photons inside the cavity and the number of excited atoms. Coherent states provide a mean field description, which becomes exact in the thermodynamic limit. Employing symmetry adapted (SA) SU(2) coherent states (SACS) the critical behavior can be described for a finite number of atoms. A variation after projection treatment, involving a numerical minimization of the SA energy surface, associates the finite number phase transition with a discontinuity in the order parameters, which originates from a competition between two local minima in the SA energy surface.
View original:
http://arxiv.org/abs/1208.2679
No comments:
Post a Comment