Mahmood Sabooni, Samuel Tornibue Kometa, Axel Thuresson, Stefan Kröll, Lars Rippe
Cavity assisted quantum memory storage has been proposed [PRA 82, 022310 (2010), PRA 82, 022311 (2010)] for creating efficient (close to unity) quantum memories using weakly absorbing materials. Using this approach we experimentally demonstrate a significant (about 20-fold) enhancement in quantum memory efficiency compared to the no cavity case. A strong dispersion originating from absorption engineering inside the cavity was observed, which directly affect the cavity line-width. A more than 3 orders of magnitude reduction of cavity mode spacing and cavity line-width from GHz to MHz was observed. We are not aware of any previous observation of several orders of magnitudes cavity mode spacing and cavity line-width reduction due to slow light effects.
View original:
http://arxiv.org/abs/1212.3774
No comments:
Post a Comment