Tuesday, February 26, 2013

1301.4439 (Thomas Vanderbruggen et al.)

A continuous source of spin-polarized cold atoms    [PDF]

Thomas Vanderbruggen, Mitchell Morgan
We propose a method to generate a source of spin-polarized cold atoms which are continuously extracted and guided from a magneto-optical trap using an atom-diode effect. We show that it is possible to create a pipe-like potential by overlapping two optical beams coupled with the two transitions of a three-level system in a ladder configuration. With alkali atoms, and in particular with $^{87}$Rb, a proper choice of transitions enables both the potential generation and optical pumping, thus polarizing the sample in a given Zeeman state. We extend the Dalibard and Cohen-Tannoudji dressed-atom model of radiative forces to the case of a three-level system. We derive expressions for the average force and the different sources of momentum diffusion in the resonant, non-perturbative regime. We show using numerical simulations that a significant fraction of the atoms initially loaded can be guided over several centimetres with output velocities of a few meters per second. This would produce a collimated continuous source of slow spin-polarized atoms suitable for atom interferometry.
View original: http://arxiv.org/abs/1301.4439

No comments:

Post a Comment