Wednesday, February 27, 2013

1302.6245 (Jose I. Latorre et al.)

Quantum Computation of Prime Number Functions    [PDF]

Jose I. Latorre, German Sierra
We propose a quantum circuit that creates a pure state corresponding to the quantum superposition of all prime numbers less than 2^n, where n is the number of qubits of the register. This Prime state can be built using Grover's algorithm, whose oracle is a quantum implementation of the classical Miller-Rabin primality test. The Prime state is highly entangled, and its entanglement measures encode number theoretical functions such as the distribution of twin primes or the Chebyshev bias. This algorithm can be further combined with the quantum Fourier transform to yield an estimate of the prime counting function, more efficiently than any classical algorithm and with an error below the bound that allows for the verification of the Riemann hypothesis. Arithmetic properties of prime numbers are then, in principle, amenable to experimental verifications on quantum systems.
View original: http://arxiv.org/abs/1302.6245

No comments:

Post a Comment