Wednesday, April 17, 2013

1106.1166 (Jonathan C. F. Matthews et al.)

Simulating quantum statistics with entangled photons: a continuous
transition from bosons to fermions
   [PDF]

Jonathan C. F. Matthews, Konstantinos Poulios, Jasmin D. A. Meinecke, Alberto Politi, Alberto Peruzzo, Nur Ismail, Kerstin Wörhoff, Mark G. Thompson, Jeremy L. O'Brien
In contrast to classical physics, quantum mechanics divides particles into two classes-bosons and fermions-whose exchange statistics dictate the dynamics of systems at a fundamental level. In two dimensions quasi-particles known as 'anyons' exhibit fractional exchange statistics intermediate between these two classes. The ability to simulate and observe behaviour associated to fundamentally different quantum particles is important for simulating complex quantum systems. Here we use the symmetry and quantum correlations of entangled photons subjected to multiple copies of a quantum process to directly simulate quantum interference of fermions, bosons and a continuum of fractional behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2% between an ideal model and experimental observation. The approach generalises to an arbitrary number of particles and is independent of the statistics of the particles used, indicating application with other quantum systems and large scale application.
View original: http://arxiv.org/abs/1106.1166

No comments:

Post a Comment