Moritz P. Haag, Markus Reiher
Significant progress in the development of efficient and fast algorithms for quantum chemical calculations has been made in the past two decades. The main focus has always been the desire to be able to treat ever larger molecules or molecular assemblies---especially linear and sub-linear scaling techniques are devoted to the accomplishment of this goal. However, as many chemical reactions are rather local, they usually involve only a limited number of atoms so that models of about two hundred (or even less) atoms embedded in a suitable environment are sufficient to study their mechanisms. Thus, the system size does not need to be enlarged, but remains constant for reactions of this type that can be described by less than two hundred atoms. The question then arises how fast one can obtain the quantum chemical results. This question is not directly answered by linear-scaling techniques. In fact, ideas such as haptic quantum chemistry or interactive quantum chemistry require an immediate provision of quantum chemical information which demands the calculation of data in "real time". In this perspective, we aim at a definition of real-time quantum chemistry, explore its realm and eventually discuss applications in the field of haptic quantum chemistry. For the latter we elaborate whether a direct approach is possible by virtue of real-time quantum chemistry.
View original:
http://arxiv.org/abs/1208.3717
No comments:
Post a Comment